COMPANY OVERVIEW

Digital Core Design is a leading IP Core provider and a System-on-Chip design house. The company was founded in 1999 and since the very beginning has been focused on IP Core architecture improvements. Our innovative, silicon proven solutions have been employed by over 300 customers and with more than 500 hundred licenses sold to companies like Intel, Siemens, Philips, General Electric, Sony and Toyota. Based on more than 70 different architectures, starting from serial interfaces to advanced microcontrollers and SoCs, we are designing solutions tailored to your needs.

IP CORE OVERVIEW

This document contains brief description of the D6803 core functionality. The D6803 is an advanced 8-bit MCU IP Core, with highly sophisticated on-chip peripheral capabilities. In a standard configuration, the core has integrated on-chip major peripheral functions. An asynchronous serial communications interface (SCI) is included. The main 16-bit three programmable timers have three input capture and five output-compare lines. A software-controlled power-saving mode - WAIT is available, to conserve additional power. This mode makes the D6803 IP Core especially attractive for automotive and battery-driven applications. The D6803 has a built-in real time hardware on-chip debugger - DoCD™. It allows easy software debugging and validation. The D6803 is fully customizable - it is delivered in an exact configuration to meet users’ requirements. It includes fully automated test bench with complete set of tests, allowing easy package validation at each stage of SoC design flow.

DESIGN FEATURES

- One global system clock
- Synchronous reset
- All asynchronous input signals are synchronized before internal use

PERIPHERALS

Peripherals implemented in a standard configuration of the D6803.

- DoCD™ On-Chip Debugger
 - Processor execution control
 - Read, write all processor contents
 - Hardware execution breakpoints
- Three 8-bit and one 5-bit I/O Ports
- Extended Interrupt Controller
- Main16-bit timer/counter system
 - 16 bit free running counter
 - Compare/Capture functions
 - Timer clocked by internal source
- Full-duplex UART - SCI
 - Standard Non-return to Zero format (NRZ)
 - Integrated baud rate generator
 - Enhanced receiver data sampling technique
 - Overrun and Framing error detection
 - Wake-up block to recognize UART wake-up from IDLE
 - Three SCI related interrupts

CPU FEATURES

- Software compatible with 6803 industry standard
- Cycle compatible with original implementation
- Power saving mode: WAIT
- Fully synthesizable, static synchronous design with no internal tri-states
- Scan test ready
- DoCD™ - Hardware On-Chip Debugger

LICENSING

Comprehensible and clearly defined licensing methods without royalty-per-chip fees make use of our IP Cores easy and simple.

Single-Site license option – dedicated to small and middle sized companies, which run their business in one place.

Multi-Site license option – dedicated to corporate customers, who operate at several locations. The licensed product can be used in selected company branches.

In all cases the number of IP Core instantiations within a project and the number of manufactured chips are unlimited. The license is royalty-per-chip free. There are no restrictions regarding the time of use.

There are two formats of the delivered IP Core:

- VHDL or Verilog RTL synthesizable HDL Source code
- FPGA EDIF/NGO/NGD/QXP/VQM Netlist

DELIVERABLES

- Source code:
 - VHDL Source Code or/and
 - VERILOG Source Code or/and
 - Encrypted, or plain text EDIF
- VHDL & VERILOG test bench environment
 - Active-HDL automatic simulation macros
 - ModelSim automatic simulation macros
 - Tests with reference responses
- Technical documentation
 - Installation notes
 - HDL core specification
 - Datasheet
- Synthesis scripts
- Example application
- Technical support
 - IP Core implementation support
 - 3 months maintenance
 - Delivery of the IP Core and documentation updates, minor and major versions changes
 - Phone & email support

OPTIONAL PERIPHERALS

The following optional peripherals can be implemented upon customer’s request.

- ADC Support
- Ethernet MAC Controller
- CAN, LIN Controllers
- I2C bus controller - Master
 - I2C bus controller - Slave
- PWM – Pulse Width Modulation Timer
- Fixed-Point arithmetic coprocessor
- Floating-Point arithmetic coprocessor IEEE-754 standard single precision

Copyright © 1999-2017 DCD – Digital Core Design. All Rights Reserved.
All trademarks mentioned in this document are the property of their respective owners.
specific functional segment is represented by two 8-bit registers. These registers contain the high and low byte of that functional block. Accessing the low byte of a specific timer function, allows full control of that function, however, an access of the high byte, inhibits that specific timer function until the byte is also accessed. The input-capture channel has its own 16-bit time capture latch (input-capture register) and the output-compare channel has its own 16-bit compare register. Additional control bits permit software to control the edge(s), that trigger each input-capture function and the automatic actions that result from output-compare functions. Although hardwired logic is included to automate many timer activities, this timer architecture is mainly a software-oriented system. This structure is easily adaptable to a very wide range of applications, although it is not as efficient, as a dedicated hardware for some specific timing applications.

SCI - a full-duplex UART type asynchronous system, using standard non-return to zero (NRZ) format: 1 start bit and a 1 stop bit. The Core resynchronizes the receiver bit clock on all one to zero transitions in the bit stream. Therefore, differences in baud rate between the sending device and the SCI are not as likely to cause reception errors. Three logic samples are taken near the middle of data bit time and majority logic decides the sense for the bit. The receiver also has the ability to enter a temporary standby mode (called receiver wake up), to ignore messages intended for a different receiver. Logic automatically wakes the receiver up, in time to see the first character of the next message. This wakeup feature greatly reduces CPU overhead in multi-drop SCI networks. The SCI transmitter can produce queued characters of idle (whole characters of all logic 1) and break (whole characters of all logic 0). In addition to the usual transmit data register empty (TDR) status flag.

I/O Ports - Three ports are 8-bit general-purpose bidirectional I/O system and one (PORTB) is 5-bit. The PORTA, PORTB, PORTC, PORTD data registers, have their corresponding data direction registers DDRA, DDRA, DDRB, DDD, DDDR to control ports data flow. It assures that all D6803’s ports have full I/O selectable registers. Writes to any ports pins cause data to be stored in the data registers. If any port pins are configured as output, then data registers are driven out of those pins. Reads from port pins configured as input, causes that input pin is read. If port pins is configured as output, during read data register is read. Writes to any ports pins not configured as outputs, do not cause data to be driven out of those pins, but the data is stored in the output registers. Thus, if the pins later become outputs, the last data written to port, will be driven out the port pins.

DoCD™ - Debug Unit – a real-time hardware debugger, which provides debugging capability of a whole SoC system. The DoCD™ provides non-intrusive debugging of running application. It can halt, run, step into or skip an instruction, read/write any contents of microcontroller, including all registers, internal, external, program memories, all SFRs, including user defined peripherals. Hardware breakpoints can be set and controlled on program memory, internal and external data memories, as well as on SFRs. Hardware breakpoint is executed, if any write/read occurs at particular address, with certain data pattern or without pattern. The DoCD™ system includes three-wire interface and complete set of tools, to communicate and work with core in real time debugging. It is built as scalable unit and some features can be turned off by the user, to save silicon and reduce power consumption. When debugger is not used, it is automatically switched to power save mode. Finally, when debug option is no longer used, whole debugger is turned off. The separate CLKD0CCLK clock line allows the debugger to operate while the CPU is in STOP mode and the major clock line CLK is stopped.
MICROCONTROLLERS FAMILY OVERVIEW

The main features of each D68HCXX and DF68XX family member have been summarized in the table below. It gives a brief member characteristic, helping you to select the most suitable IP Core for your application. You can specify your own peripheral set (including listed above and the others) and request the core modifications.

<table>
<thead>
<tr>
<th>Design</th>
<th>Speed acceleration</th>
<th>Physical Linear memory space</th>
<th>Pageable Data Memory space</th>
<th>Motorola Memory Expansion Logic</th>
<th>Interrupt sources</th>
<th>Real Time Interrupts</th>
<th>Data Pointers READY for PGA and Data Memories</th>
<th>Compare/Capture</th>
<th>Main Timer System</th>
<th>SCI (UART)</th>
<th>I/O Ports</th>
<th>SPI/MISO Interface</th>
<th>Watchdog Timer</th>
<th>Pulse accumulator</th>
<th>Interface for additional SFRs</th>
<th>DoCD Debugger</th>
<th>Size – ASIC Gates</th>
</tr>
</thead>
<tbody>
<tr>
<td>D6802</td>
<td>1</td>
<td>64k</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>3 900</td>
</tr>
<tr>
<td>D6803</td>
<td>1</td>
<td>64k</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>6 000</td>
</tr>
<tr>
<td>D6809</td>
<td>1</td>
<td>64k</td>
<td>-</td>
<td>9 000</td>
</tr>
<tr>
<td>DF6805</td>
<td>4.1</td>
<td>64k</td>
<td>-</td>
<td>7</td>
<td>7</td>
<td>-</td>
<td>*</td>
<td>2/2*</td>
<td>1*</td>
<td>✓</td>
<td>+</td>
<td>+</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>6 700</td>
</tr>
<tr>
<td>D68HC05</td>
<td>1.0</td>
<td>64k</td>
<td>-</td>
<td>7</td>
<td>7</td>
<td>-</td>
<td>*</td>
<td>2/2*</td>
<td>1*</td>
<td>✓</td>
<td>+</td>
<td>+</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>6 700</td>
</tr>
<tr>
<td>DF6808</td>
<td>3.2</td>
<td>64k</td>
<td>-</td>
<td>7</td>
<td>7</td>
<td>-</td>
<td>*</td>
<td>2/2*</td>
<td>1*</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>8 900</td>
</tr>
<tr>
<td>D68HC08</td>
<td>1.0</td>
<td>64k</td>
<td>-</td>
<td>7</td>
<td>7</td>
<td>-</td>
<td>*</td>
<td>2/2*</td>
<td>1*</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>8 900</td>
</tr>
<tr>
<td>D68HC11E</td>
<td>1.0</td>
<td>64k</td>
<td>-</td>
<td>20</td>
<td>17</td>
<td>✓</td>
<td>*</td>
<td>1*</td>
<td>5/3*</td>
<td>1*</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>12 000</td>
</tr>
<tr>
<td>D68HC11F</td>
<td>1.0</td>
<td>64k</td>
<td>-</td>
<td>20</td>
<td>17</td>
<td>✓</td>
<td>*</td>
<td>1*</td>
<td>5/3*</td>
<td>1*</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>13 500</td>
</tr>
<tr>
<td>D68HC11K</td>
<td>1.0</td>
<td>1M</td>
<td>✓</td>
<td>25</td>
<td>22</td>
<td>✓</td>
<td>1*</td>
<td>13/6*</td>
<td>3*</td>
<td>✓</td>
<td>4</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>21 000</td>
</tr>
<tr>
<td>D68HC11K</td>
<td>1.0</td>
<td>1M</td>
<td>✓</td>
<td>20</td>
<td>17</td>
<td>✓</td>
<td>1*</td>
<td>5/3*</td>
<td>✓</td>
<td>2*</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>16 000</td>
</tr>
<tr>
<td>DF6811E</td>
<td>4.4</td>
<td>64k</td>
<td>-</td>
<td>20</td>
<td>17</td>
<td>✓</td>
<td>*</td>
<td>5/3*</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>12 000</td>
</tr>
<tr>
<td>DF6811F</td>
<td>4.4</td>
<td>64k</td>
<td>-</td>
<td>20</td>
<td>17</td>
<td>✓</td>
<td>*</td>
<td>5/3*</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>13 000</td>
</tr>
<tr>
<td>DF6811K</td>
<td>4.4</td>
<td>1M</td>
<td>✓</td>
<td>20</td>
<td>17</td>
<td>✓</td>
<td>*</td>
<td>5/3*</td>
<td>2*</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>16 000</td>
</tr>
</tbody>
</table>

+ optional | * configurable

D68HCXX family of High Performance Microcontroller Cores

CONTACT

Digital Core Design Headquarters:
Wroclawska 94, 41-902 Bytom, POLAND
e-mail: info@dcd.pl
tel.: 0048 32 282 82 66
fax: 0048 32 282 74 37

Distributors:
Please check: http://dcd.pl/sales

Copyright © 1999-2017 DCD – Digital Core Design. All Rights Reserved. All trademarks mentioned in this document are the property of their respective owners.